Bulk Metal® Foil Technology Ultra High Precision Z-Foil Voltage Divider Resistors with TCR Tracking to 0.1 ppm/°C, Power Coefficient Tracking of 5 ppm at Rated Power, and Tolerance Match to 0.005 % (50 ppm)

FEATURES
- Temperature coefficient of resistance (TCR):
 - Absolute: ± 0.05 ppm/°C typical (0 °C to + 60 °C)
 - ± 0.2 ppm/°C typical (-55 °C to + 125 °C, +25 °C ref.)
 - TCR tracking: 0.1 ppm/°C typical
- Tolerance: absolute and matching to 0.005 % (50 ppm)
- Power coefficient tracking "ΔR due to self heating": 5 ppm at rated power
- Power rating: 0.2 W at 70 °C, for the entire resistive element R1 and R2, divided proportionally between the two values
- Load life ratio stability: < 0.005 % (50 ppm) 0.2 W at 70 °C for 2000 h
- Maximum working voltage: 200 V
- Resistance range: 100R to 20K per resistive element
- Foil resistors are not restricted to standard values/ratios; specific "as requested" values/ratios can be supplied at no extra cost or delivery (e.g. 1K2345 vs. 1K)
- Electrostatic discharge (ESD) up to 25 000 V
- Non-inductive, non-capacitive design
- Rise time: 1 ns effectively no ringing
- Current noise: 0.010 µV RMS/V of applied voltage (< -40 dB)
- Thermal EMF: 0.05 µV/°C typical
- Voltage coefficient: < 0.1 ppm/V
- Non inductive: < 0.08 µH
- Non hot spot design
- Thermal stabilization time < 1 s (nominal value achieved within 10 ppm of steady state value)
- Terminal finish: lead (Pb)-free or tin/lead alloy
- Compliant to RoHS directive 2002/95/EC
- Prototype quantities available in just 5 working days or sooner. For more information, please contact foil@vishaypg.com
- For better performances please contact us

* Pb containing terminations are not RoHS compliant, exemptions may apply

APPLICATIONS
- Instrumentation amplifiers
- Bridge networks
- Differential amplifiers
- Military
- Space
- Medical
- Automatic test equipment
- Down-hole (high temperature)

TABLE 1A - MODELS 300144Z AND 300145Z SPECIFICATIONS

<table>
<thead>
<tr>
<th>RESISTANCE VALUES</th>
<th>ABSOLUTE TOLERANCE</th>
<th>ABSOLUTE TCR (-55 °C to +125 °C, +25 °C ref.) TYPICAL AND MAX. SPREAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 500 Ω to 20 kΩ</td>
<td>± 0.005 %</td>
<td>± 0.2 ppm/°C ± 1.8 ppm/°C</td>
</tr>
<tr>
<td>100 Ω to < 500 Ω</td>
<td>± 0.01 %</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 1B - MODELS 300144Z AND 300145Z SPECIFICATIONS

<table>
<thead>
<tr>
<th>RESISTANCE RATIO</th>
<th>TOLERANCE MATCH</th>
<th>TCR TRACKING MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>0.005 %</td>
<td>0.5 ppm/°C</td>
</tr>
<tr>
<td>> 1:1 to 4:1</td>
<td>0.01 %</td>
<td>0.75 ppm/°C</td>
</tr>
<tr>
<td>> 4:1 to 10:1</td>
<td></td>
<td>1.0 ppm/°C</td>
</tr>
<tr>
<td>> 10:1</td>
<td></td>
<td>1.5 ppm/°C</td>
</tr>
</tbody>
</table>
INTRODUCTION
Possibly you have become so accustomed (and inured) to a slight instability or drift in your equipment that you no longer regard the problem as a soluble. You have learned to live with it. But have your customers? They are still waiting for a solution. And if you cannot provide one, someone else may. There are so many stability problems directly traceable to resistive devices that skimping on the quality of a few critical resistors, resistive networks may be counterproductive.

Load Life Stability
Load Life stability is the characteristics most relied upon to demonstrate resistor long term reliability. Many applications require a load life of between 2000 h to 10 000 h with limits on the amount of shift and the number of failure rate demonstration.

The ultra high precision Z-Foil divider and network have the tightest allowable limits.

Whether high reliable application or not, the load life stability of Foil resistors is unparalleled and long term serviceability is assured.

With Bulk Metal® Foil resistors, only a minimal shift in resistance value will occur during its entire lifetime. Most of this shift takes place during the first few hundred hours of operation, and virtually no change is noted thereafter.

Ratio Stability
Resistors in dividers or networks form are called upon to maintain a track and match more than at ambient temperature and when they expose to stress factors before, during and after the assembly. Throughout the long service life of the equipment, the resistors around the op amplifier for example are required to track (to hold ratio) even though the dissipation in the feedback resistor is different than that in the sense resistor, causing on one to be at higher temperature than the other. This is called tracking under power for short term (power coefficient of resistance) or for a long term (load life stability).

Temperature Coefficient of Resistance (TCR)
The low temperature coefficient of resistors are achieved by the use of especially selected materials for the resistive and insulating members of the resistors which self-compensate the thermal coefficient of expansion.

Change in a metal's resistivity occurs in two ways: by changes in temperature (external and internal) and by changes in mechanical strain.

By developing resistor element materials whose resistances change positively when subjected to temperature increase, and negativity when subjected to compression, the Foil resistors achieved, in the temperature range - 55 °C to + 125 °C, a maximum absolute TCR of 5 ppm/°C for the classical Foil and maximum 2 ppm/°C for the Z-Foil technology.

To achieve maximum optimum TC tracking between resistors, all factors that affect the TCR of each resistor must be uniform. Whatever their resistance range or wattage, all Foil resistors exhibit identical temperature coefficients as all are made of the same alloy and of identical physical and electrical characteristics. The only variable between these resistors is the pattern photoetched on the element, a process that does not alter alloy properties in any way. In resistors, all TCR and other electrical characteristics are inherent to the alloy, and are therefore uniform between individual resistors, as well as between batches, thus accurate “tracking” of one style resistor to another is assured (even if they differ in size and range). Data on TCR spread shown (fig. 4) illustrate the excellent tracking available with all Foil resistors.

Because of this excellent tracking ability, resistors are ideal for use in resistor networks where accurate ratios must be maintained over a wide temperature range.

This designed-in TCR uniformity contrasts sharply with the TCR tracking capability of wirewound and conventional metal film units. TCR characteristics between wirewounds of different resistance ranges and wattage are highly non-uniform, because (a) different wire diameters are used, (b) winding-induced stresses-which have a direct bearing on TCR.

Conventional metal films units offer quite variable and often unpredictable TC tracking because composition, film thickness, and deposition techniques are varied to meet different resistance range and wattage requirements.

Our application engineering department is available to advise and make recommendations. For non-standard technical requirements and special applications. Please contact us.

FIGURE 1 - TRIMMING TO VALUES (conceptual illustration)
FIGURE 2 - STANDARD PRINTING AND DIMENSIONS in inches (millimeters)

Model 300144Z and Schematic (2)

[Diagram of Model 300144Z and Schematic]

Model 300145Z and Schematic (2)(3)

[Diagram of Model 300145Z and Schematic]

Dimensional Tolerance: ± 0.010" (0.25)

(1) Lead wires: #22 AWG solder coated copper, 0.75" minimum length
(2) Each divider pair consists of two resistors on one single chip
(3) For model 300145Z the 2 chips are independent and with no special relationship from chip to chip

FIGURE 3 - POWER DERATING CURVE

300144Z, 300145Z

[Graph showing power derating curve]

Note

• Power is divided proportionally between the 2 values

FIGURE 4 - TYPICAL RESISTANCE/TEMPERATURE CURVE

(for more details see table 1A)

[Graph showing typical resistance/temperature curve]

TCR Chord Slopes for Different Temperature Ranges

- 0.1 ppm/°C 0.1 ppm/°C

- 0.14 ppm/°C 0.05 ppm/°C

+ 0.16 ppm/°C 0.2 ppm/°C
TABLE 2 - GLOBAL PART NUMBER INFORMATION (1)

NEW GLOBAL PART NUMBER: Y1691V0058QT9L (preferred part number format)

<table>
<thead>
<tr>
<th>Y</th>
<th>PRODUCT CODE</th>
<th>RESISTANCE VALUE CODE</th>
<th>V</th>
<th>RESISTANCE TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1691</td>
<td>300144Z</td>
<td></td>
<td>V</td>
<td>± 0.005 %</td>
</tr>
<tr>
<td>1735</td>
<td>300145Z</td>
<td></td>
<td>T</td>
<td>± 0.01 %</td>
</tr>
</tbody>
</table>

- **Y** denotes precision V-code tolerance match packaging.
- **V** = 0.005 %
- **T** = 0.01 %
- **Q** = 0.02 %
- **A** = 0.05 %
- **B** = 0.1 %
- **D** = 0.5 %
- **F** = 1.0 %

FOR EXAMPLE: ABOVE GLOBAL ORDER Y1691 V0058 Q T 9 L:

- **TYPE:** 300144Z
- **VALUES:** 2K/20K
- **ABSOLUTE TOLERANCE:** ± 0.02 %
- **TOLERANCE MATCH:** 0.01 %
- **TERMINATION:** lead (Pb)-free
- **PACKAGING:** bulk pack

HISTORICAL PART NUMBER: 300144ZT 2K/20K TCR0.2 Q T B (will continue to be used)

Notes

(1) For non-standard requests, please contact application engineering

(2) For 300145 please specify the resistance value for each resistor even if all values are equal
TABLE 3 - EXAMPLES OF VCODES FOR POPULAR VALUES (other values available on request)

<table>
<thead>
<tr>
<th>VCODES</th>
<th>R1</th>
<th>R2</th>
<th>VCODES</th>
<th>R1</th>
<th>R2</th>
<th>VCODES</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0009</td>
<td>20K</td>
<td>20K</td>
<td>V0058</td>
<td>2K</td>
<td>20K</td>
<td>V0008</td>
<td>10K</td>
<td>10K</td>
<td>10K</td>
<td>10K</td>
</tr>
<tr>
<td>V0010</td>
<td>20K</td>
<td>10K</td>
<td>V0003</td>
<td>2K</td>
<td>18K</td>
<td>V0019</td>
<td>5K</td>
<td>5K</td>
<td>5K</td>
<td>5K</td>
</tr>
<tr>
<td>V0100</td>
<td>20K</td>
<td>2K</td>
<td>V0029</td>
<td>2K</td>
<td>4K</td>
<td>V0092</td>
<td>1K</td>
<td>7K812</td>
<td>7K812</td>
<td>1K</td>
</tr>
<tr>
<td>V0055</td>
<td>19K4</td>
<td>9K7</td>
<td>V0059</td>
<td>2K</td>
<td>2K</td>
<td>V0232</td>
<td>500R</td>
<td>500R</td>
<td>500R</td>
<td>500R</td>
</tr>
<tr>
<td>V0223</td>
<td>17K5</td>
<td>20K</td>
<td>V0103</td>
<td>2K</td>
<td>3K</td>
<td>V0047</td>
<td>100R</td>
<td>8K8</td>
<td>100R</td>
<td>8K8</td>
</tr>
<tr>
<td>V0097</td>
<td>15K</td>
<td>15K</td>
<td>V0154</td>
<td>1K5</td>
<td>3K</td>
<td>V0051</td>
<td>100R</td>
<td>10K</td>
<td>100R</td>
<td>10K</td>
</tr>
<tr>
<td>V0001</td>
<td>10K</td>
<td>10K</td>
<td>V0032</td>
<td>1K</td>
<td>16K</td>
<td>V0051</td>
<td>100R</td>
<td>10K</td>
<td>100R</td>
<td>10K</td>
</tr>
<tr>
<td>V0042</td>
<td>10K</td>
<td>8K323</td>
<td>V0121</td>
<td>1K</td>
<td>2K</td>
<td>V0227</td>
<td>350R</td>
<td>350R</td>
<td>350R</td>
<td>350R</td>
</tr>
<tr>
<td>V0006</td>
<td>10K</td>
<td>2K</td>
<td>V0004</td>
<td>1K</td>
<td>1K</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0166</td>
<td>10K</td>
<td>15K</td>
<td>V0379</td>
<td>1K</td>
<td>7K</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0226</td>
<td>9K</td>
<td>10K</td>
<td>V0374</td>
<td>800R</td>
<td>800R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0003</td>
<td>9K</td>
<td>1K</td>
<td>V0022</td>
<td>511R</td>
<td>16K2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0013</td>
<td>8K</td>
<td>16K</td>
<td>V0091</td>
<td>500R</td>
<td>500R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0107</td>
<td>6K</td>
<td>20K</td>
<td>V0162</td>
<td>500R</td>
<td>15K</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0014</td>
<td>6K</td>
<td>7K</td>
<td>V0378</td>
<td>500R</td>
<td>4K5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0160</td>
<td>6K</td>
<td>6K</td>
<td>V0061</td>
<td>300R</td>
<td>300R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0159</td>
<td>5K5</td>
<td>7K7</td>
<td>V0088</td>
<td>100R</td>
<td>100R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0005</td>
<td>5K</td>
<td>10K</td>
<td>V0380</td>
<td>100R</td>
<td>15K</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0002</td>
<td>5K</td>
<td>5K</td>
<td>V0375</td>
<td>100R</td>
<td>12K3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0373</td>
<td>4K</td>
<td>12K</td>
<td>V0381</td>
<td>100R</td>
<td>50R</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0026</td>
<td>3K</td>
<td>19K2</td>
<td>V0377</td>
<td>50R</td>
<td>28K</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0156</td>
<td>3K</td>
<td>6K</td>
<td>V0376</td>
<td>35R</td>
<td>20K</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V0158</td>
<td>2K7</td>
<td>10K</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note
- A combination of these values are available in reverse order and in values up to 5 digits
Disclaimer

ALL PRODUCTS, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay Precision Group”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

The product specifications do not expand or otherwise modify Vishay Precision Group's terms and conditions of purchase, including but not limited to, the warranty expressed therein.

Vishay Precision Group makes no warranty, representation or guarantee other than as set forth in the terms and conditions of purchase. To the maximum extent permitted by applicable law, Vishay Precision Group disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Information provided in datasheets and/or specifications may vary from actual results in different applications and performance may vary over time. Statements regarding the suitability of products for certain types of applications are based on Vishay Precision Group's knowledge of typical requirements that are often placed on Vishay Precision Group products. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application.

No license, express, implied, or otherwise, to any intellectual property rights is granted by this document, or by any conduct of Vishay Precision Group.

The products shown herein are not designed for use in life-saving or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay Precision Group products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay Precision Group for any damages arising or resulting from such use or sale. Please contact authorized Vishay Precision Group personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.